National Institute of Standards & Technology # Report of Investigation ## Reference Material 8601 Copper Ore GBW 07234 Hubei Geological Research Laboratory This Reference Material (RM) is a copper ore mined from a skarn copper-iron deposit, then prepared and certified by the Hubei Geological Research Laboratory (HGRL) in China which is the sole authority for the information provided in this report including reference values and other technical information [1]. It is intended for use in geological and geochemical investigations, particularly in geochemical exploration programs and in studies of ore genesis, and for environmental monitoring in mining areas. Each unit of this RM consists of 100 g of ore pulverized to pass a 100 µm screen (-160 mesh). Material Collection and Preparation: More than 300 kg of material were collected from the copper-iron skarn deposit of the Shitouzui ore district in Daye County, Hubei Province. The ore was first broken into particles of 3 cm to 5 cm size and then reduced to less than 0.83 mm size in a jaw crusher. The material was passed by a magnet to remove any iron chips, then ground to less than 0.097 mm powder in a disk pulverizer. Approximately 300 kg of the final powder, of which 100 % passed a 100 μm screen (-160 mesh), was blended for 10 h. Grab samples were taken for homogeneity testing by x-ray fluorescence spectrometry, and the powder was bottled in either 50 g or 100 g containers. **Analysis:** The Laboratory of the Research Institute of the Ministry of Geology and Mineral Resources, its subsidiary laboratories in 12 provinces, the Department of the Nuclear Power Industry, and the Chinese Academy of Sciences collaborated in providing certification analyses for the material. Most constituents were determined by three or more independent methods of analysis. These included classical chemical methods, polarography, UV-spectrophotometry, x-ray fluorescence, inductively coupled plasma atomic emission, inductively coupled plasma mass spectrometric methods, atomic absorption spectrometry, and other methods. Reference concentration values derived from the total data set by HGRL are given in Table 1. Methods of analysis by element are given in Table 2. **Mineral Composition:** In addition to chemical analyses, mineral composition was determined by heavy mineral separations, polished thin section, and polarizing microscopy at HGRL. The major ore mineral in RM 8601 is magnetite. Major ore minerals are chalcopyrite, chalcocite, pyrite, ilmenite, and bornite. Major gangue minerals are quartz, plagioclase, and kaolinite. The material preparation and technical measurements were performed by the Hubei Geological Research Laboratory, Hubei Province, China. The support aspects involved in the original issuance of this RM were coordinated through the NIST Standard Reference Materials Program by J.S. Kane. Revision of this report was coordinated through the NIST Standard Reference Materials Program by B.S. MacDonald. This Report of Investigation has undergone editorial revision to reflect program and editorial changes at NIST and the Department of Commerce. No attempt was made to reevaluate the reported values or any technical data. Gaithersburg, MD 20899 Report Issue Date: 28 August 2000 See Report Revision History on Last Page Nancy M. Trahey, Chief Standard Reference Materials Program RM 8601 Page 1 of 4 Table 1. HGRL Reference Concentration Values a,b (All analyses are based on samples dried 2 h at 105 $^{\circ}$ C) | Element | Mass Fraction | Gangue | Mass Fraction | |---------|------------------------------------|---------------|---| | Ziement | (%) | Constituents | (%) | | Cu
S | 0.19 ± 0.01
0.14 ± 0.02 | Al_2O_3 CaO | $\begin{array}{cccc} 15.18 & \pm & 0.24 \\ 4.95 & \pm & 0.07 \end{array}$ | | Zn | 0.013 ± 0.001 | CO_2 | (3.98) | | | | FeO | (5.09) | | | | $Fe_2O_3(T)$ | 12.25 ± 0.08 | | | | H_2O^+ | (2.39) | | | | K_2O | 2.71 ± 0.05 | | | | MgO | 1.30 ± 0.04 | | | | MnO | 0.12 ± 0.01 | | | | Na_2O | 3.21 ± 0.09 | | | | P_2O_5 | (0.023) | | | | ${ m SiO_2}$ | 53.36 ± 0.19 | | | | TiO_2 | 0.50 ± 0.02 | | | | F | 0.080 ± 0.003 | | ement | Mass Fraction | Element | Mass Fraction | | Element | Mass Fraction (mg/kg) | | Element | Mass Fraction (mg/kg) | | | |---------|-----------------------|------|---------|-----------------------|-------|------| | Ag | $0.70 \pm$ | 0.14 | Lu | 0.20 | ± | 0.02 | | As | $1.5 \pm$ | 0.3 | Mo | 2.4 | \pm | 0.3 | | Ba | (800) | | Nd | 29.4 | ± | 1.8 | | Bi | $0.43 \pm$ | 0.03 | Ni | 5.6 | ± | 0.6 | | Cd | $0.14 \pm$ | 0.03 | Pb | 13.0 | ± | 2.1 | | Ce | $72.6 \pm$ | 5.7 | Pr | 8.1 | ± | 0.6 | | Co | $16.9 \pm$ | 0.9 | Rb | (94) | | | | Cr | (10) | | Sb | 0.23 | \pm | 0.04 | | Cs | (10) | | Sc | 5.4 | ± | 0.4 | | Dy | $2.4 \pm$ | 0.2 | Se | 0.89 | ± | 0.09 | | Er | $1.3 \pm$ | 0.2 | Sm | 5.1 | ± | 0.3 | | Eu | $1.3 \pm$ | 0.1 | Sn | 3.8 | ± | 0.4 | | Ga | $22.6 \pm$ | 1.5 | Tb | 0.48 | ± | 0.04 | | Gd | $3.6 \pm$ | 0.2 | Te | 0.13 | \pm | 0.04 | | Ge | $0.93 \pm$ | 0.19 | Th | 8.8 | ± | 0.5 | | Но | $0.48 \pm$ | 0.04 | Tl | 0.36 | ± | 0.04 | | In | $0.25 \pm$ | 0.05 | Tm | 0.18 | ± | 0.05 | | La | $40.3 \pm$ | 1.7 | W | 3.9 | ± | 0.4 | | Li | (15) | | Y | 11.8 | \pm | 0.8 | | | | | Yb | 1.2 | ± | 0.1 | Uncertainties are expressed as the 95 % confidence interval of the reference concentration value. Values in parentheses () are given for information only. RM 8601 Page 2 of 4 Table 2. Methods of Analysis for Individual Elements | Element | Analytical Method | Element | Analytical Method | |--------------|----------------------------------|-----------|---------------------------------------| | Ag | AAS, AAN, ES, ICP-AES, NAA | Al_2O_3 | COL, NAA, VOL, XRF | | As | AF, COL, ICP-AES, NAA, VOL | Ba | NAA | | Bi | AAS, AF, COL, ES, ICP-AES, POL | CaO | AAS, NAA, VOL, XRF | | Cd | AAS, AAN, ICP-AES, POL | Ce | ICP-AES, ICP-MS, NAA | | Co | AAS, AAN, COL, ICP-AES, NAA, POL | Cr | AAS, COL, NAA | | Cs | NAA | Cu | AAS, COL, ICP-AES, NAA, POL, VOL, XRF | | Dy | ICP-AES, ICP-MS, NAA | Er | ICP-AES, ICP-MS | | Eu | ICP-AES, ICP-MS, NAA | F | COL, ISE | | $Fe_2O_3(T)$ | AAS, COL, NAAA, VOL, XRF | Ga | AAN, COL, ICP-AES, POL | | Gd | ICP-AES, ICP-MS, NAA | Ge | COL, POL | | Но | ICP-AES, ICP-MS, NAA | In | AAN, COL, POL | | K_2O | AAS, AES, FP, NAA, XRF | La | ICP-AES, ICP-MS, NAA | | Li | AAS, AES | Lu | ICP-AES, ICP-MS | | MgO | AAS, NAA VOL, XRF | MnO | AAS, COL, ICP-AES, NAA, VOL, XRF | | Mo | COL, ICP-AES, NAA, POL, XRF | Na_2O | AAS, AES, FP, NAA, XRF | | Nd | ICP-AES, ICP-MS, NAA | Ni | AAS, AAN, ICP-AES, NAA, POL | | P_2O_5 | COL, XRF | Pb | AAS, AAN, ES, ICP-AES, POL, VOL, XRF | | Pr | ICP-AES, ICP-MS | Rb | AAS, NAA | | Re | COL, ICP-AES, POL | S | GR, ICP-AES, VOL | | Sb | AF, ICP-AES, NAA | Sc | ICP-AES, NAA | | Se | AAN, AF, COL, ICP-AES, NAA, POL | SiO_2 | COL, GR, ICP-AES, VOL, XRF | | Sm | ICP-AES, ICP-MS, NAA | Sn | AAH, COL, ES, POL | | Tb | ICP-AES, ICP-MS, NAA | Te | AAN, AF, COL, ICP-AES, POL | | Th | COL, ICP-AES, NAA | TiO_2 | COL, ICP-AES, NAA, XRF | | Tl | AAN, COL, POL | Tm | ICP-AES, ICP-MS, NAA | | W | COL, ICP-AES, NAA, POL, XRF | Y | ICA-AES, ICP-MS | | Yb | ICP-AES, ICP-MS, NAA | Zn | AAS, ICP-AES, NX POL, VOL, XRF | ### Method Abbreviations: | AAS | Atomic Absorption Spectrometry-Hame | |---------|---| | AAN | Atomic Absorption Spectrometry-Graphite Furnace | | AAH | Atomic Absorption Spectrometry-Hydride Generation | | AF | Atomic Fluorescence Spectrometry | | COL | Colorimetry | | ES | Emission Spectrometry | | FP | Flame Photometry | | GR | Gravimetry | | ICP-AES | Inductively Coupled Plasma-Atomic Emission Spectrometry | | ICP-MS | Inductively Coupled Plasma-Mass Spectrometry | | ISE | Ion Selective Electrode | | NAA | Neutron Activation Analysis | | POL | Polarography | | XRF | X-Ray Fluorescence Spectrometry | | VOL | Volumetric Analysis | RM 8601 Page 3 of 4 #### REFERENCE Report Revision History: 28 August 2000 (editorial change); 25 June 1992 (original report date). Users of this RM should ensure that the report in their possession is current. This can be accomplished by contacting the SRM Program at: telephone (301) 975-6776; fax (301) 926-4751; e-mail srminfo@nist.gov; or via the Internet http://www.nist.gov/srm. RM 8601 Page 4 of 4